Zum Reaktionsablauf der anodischen Oxidation N-acylierter α -Aminocarbonsäuren^{1b)}

H. Günter Thomas* und Stephan Kessel *)

Institut für Organische Chemie der Technischen Hochschule Aachen, Professor-Pirlet-Straße 1, D-5100 Aachen

Eingegangen am 28. Januar 1988

Die anodische Oxidation N-acylierter α -Aminosäuren 1 führt nach dem Mechanismus der Non-Kolbe-Elektrolyse nur zu den Substitutionsprodukten 2 und – anders als bei O-acylierten α -Hydroxycarbonsäuren – nicht zu den Fragmentierungsprodukten 3. Durch Variation der Säuren 1 wird bewiesen, daß die Oxidation von 1 an der Carboxylatfunktion einsetzt und nicht über die Amidgruppe verläuft.

O-Benzoylierte α -Hydroxyessigsäuren bilden bei anodischer Oxidation neben den für Non-Kolbe-Elektrolysen typischen Substitutionsprodukten auch anteilig Benzoesäureester durch heterolytische Fragmentierung der zunächst entstandenen Kationen¹⁾. Wir untersuchten nun, ob *N*-acylierte α -Aminocarbonsäuren 1 (s. Tab. 1) unter denselben Elektrolysebedingungen analoges Reaktionsverhalten zeigen.

Elektrolysen von N-Acyl-a-aminocarbonsäuren wurden zuerst von Fichter und Schmid²⁾ am Beispiel von N-Acetylglycin beschrieben, wobei im wäßrigen Elektrolyten neben Kohlendioxid auch noch die formal als Fragmentierungsprodukte aufzufassenden Verbindungen Formaldehyd und Ammoniak sowie Essigsäure entstanden, wobei die Beobachtung mitgeteilt wird: "Das Ammoniak läßt sich aus dem Elektrolyten nur langsam austreiben, es ist vielleicht teilweise in Form von verseifbaren Verbindungen vorhanden".Später oxidierten Linstead, Shephard und Weedon^{3a)} N-acylierte α -Aminocarbonsäuren an Platinelektroden in Methanol. Aus der Elektrolyse von N-Benzoylglycin (1a) z. B. isolierten sie in 61 proz. Ausbeute nur ein Produkt, N-(Methoxymethyl)benzamid (2a), durch Umkristallisieren aus Petrolether/Benzol. Eventuell entstandenes Fragmentierungsprodukt Benzoesäure-methylester (3a) ließe sich auf diese Weise nicht isolieren.

Mit speziellen Zielsetzungen wurden in neuester Zeit Elektrolysen acylierter α -Aminosäuren unter Bildung von Substitutionsprodukten wieder aufgenommen^{3b)}.

Experimentelle Ergebnisse

Die Säuren 1 wurden unter denselben Bedingungen wie zuvor die *O*-benzoylierten α -Hydroxyessigsäuren elektrolysiert^{1a)}. Kontrolle des Säureverbrauchs während

Concerning the Reaction Mechanism of the Anodic Oxidation of N-Acylated α-Aminocarboxylic Acids

Anodic oxidation of N-acylated α -aminocarboxylic acids 1 leads by non-Kolbe electrolysis only to substitution products 2; in contrast to O-acylated hydroxycarboxylic acids no fragmentation product 3 can be observed. Derivation of the acids 1 proves that the carboxylate function and not the amide group is involved in anodic oxidation.

Tab. 1. Untersuchte N-Acyl-α-aminocarbonsäuren 1

der Elektrolyse ergab in allen Fällen eine hohe Stromausbeute unter Annahme eines Zweielektronenprozesses (s. Tab. 2).

Kolbe-Produkte, das wären bisacylierte Ethylendiaminderivate, konnten in keinem Fall nachgewiesen werden. Aus *N*-Benzoylglycin (1a) und (*R*,*S*)-*N*-Benzoylalanin (1b) entstanden die schon von Linstead et al.³⁾ beschriebenen Produkte *N*-(Methoxymethyl)benzamid (2a) und (*R*,*S*)-*N*-(α -Methoxyethyl)benzamid (2b). Das Fragmentierungsprodukt, in beiden Fällen Benzoesäure-methylester (3a), konnte innerhalb der Nachweisgrenzen nicht festgestellt werden. Bei Proben, denen etwa 1% 3a zugesetzt wurde, war der Nachweis durch GC und ¹H-NMR (CH₃O-Singulett) eindeutig positiv. Es waren darüber hinaus keine weiteren Produkte nachweisbar (Ausbeuten nach Aufarbeiten s. Tab. 2).

^{*)} Jetzige Adresse: Uniroyal Englebert Reifen GmbH, European Tire Development Center, Hüttenstraße 7, D-5100 Aachen.

Schema 1. Anodische Oxidation N-acylierter α-Aminocarbonsäuren 1

Tab. 2. Elektrolyseprodukte

1	Umsatz ^{a)}	Produkte %	Ausbeuten ^{b)} %
a	92	2a	65
b	97	2b	78
с	100	2c	40 ^{c)}
d	d)	-	_
e	94	2e	64
f	92	2f	70
ſ	e)	2f	n. best.
g	103 ⁿ	2g/6g	10/-
ň	91 ⁰	2h/6h	25/19

^{a)} Der Umsatz wurde durch Vergleich des gemessenen Säureverbrauchs mit dem theoretisch möglichen Umsatz bei angenommenem Zweielektronenprozeß bestimmt. – ^{b)} Angegeben sind Ausbeuten umkristallisierter oder destillierter Produkte; im 'H-NMR-Spektrum waren keine anderen Produkte erkennbar (Ausnahme 1h, s. Exp. Ergebnisse). – ^{e)} 2c zersetzt sich beim Aufarbeiten. – ^{d)} 1d wurde nicht elektrolysiert (s. Diskussion der Ergebnisse). – ^{e)} Bestimmung erfolgte mit racem. Material 2f. – ^{f)} Bestimmung fehlerhaft wegen 6g bzw. 6h.

N-Benzoyl-2-methylalanin (1c) bildet laut ¹H-NMR ebenfalls nur eine Verbindung, N-(α -Methoxyisopropyl)benzamid (2c). Nach Umkristallisieren aus Methanol/Wasser wurde nur Benzamid erhalten. Durch Aufarbeiten in aprotischen Lösemitteln wurde 2c isoliert. Aus diesem entsteht in den für NMR-Spektroskopie üblichen Lösemitteln wie z. B. CCl₄ *N*-Isopropylidenbenzamid (4), das leicht durch das bekannte Spektrum identifizierbar ist⁴⁾. 4 hydrolysiert dann zu Benzamid (5) bei wäßrigem Aufarbeiten. Versuche, das Acylimin 4 direkt durch Elektrolyse im weniger nucleophilen Lösemittel Acetonitril herzustellen, scheiterten an der völligen Unlöslichkeit der Säure 1c im genannten Lösemittel. *N*-Acetylsarkosin (1e) liefert *N*-(Methoxymethyl)-*N*methylacetamid (2e), das ebenso wie 1e als Z/E-Isomerengemisch bezüglich der C-N-Bindung vorliegt⁵⁾. (*R*,S)-*N*-

Acetylalanin (1f) wird wie von Linstead et al.³⁾ und von Mitzlaff⁶⁾ beschrieben in (R,S)-N-(1-Methoxyethyl)acetamid (2f) übergeführt. (S)-(-)-N-Acetylalanin (1f') wird zu racemischem Amid 2f elektrolysiert, dabei nimmt der Drehwert der Elektrolyselösung in direkter Abhängigkeit von der transportierten Ladung, d.h. mit der umgesetzten Säure ab. Zuvor war durch ein Blindexperiment bewiesen worden, daß die Elektrolyselösung selber über mehrere Stunden hinweg keine Drehwertänderung erfährt. Erhalt von optischer Aktivität während der Elektrolyse wäre nur mit stereoselektiver Substitution von durch Oxidation der Carboxylatfunktion intermediär entstandener Dioxiranyl-Kationen erklärbar gewesen (s. dazu Lit.^{1b,7)}. Bei den Elektrolysen von N-Succinylglycin (1g) und N-Phthaloylglycin (1h) wird die Anode mit einem weißen Belag überzogen, der im Falle von 1h dazu führt, daß die Leitfähigkeit in der Zelle rasch abnimmt. 1g wird durch Elektrolyse in N-(Methoxymethyl)succinimid (2g) und in Succinylglycin-(succinylmethyl)ester (6g) umgewandelt. Der bei der Elektrolyse entstehende Anodenbelag ist die Verbindung 6g. Aus N-Phthaloylglycin (1h) entstehen neben N-(Methoxymethyl)phthalimid (2h) weitere Produkte; im ¹H-NMR-Spektrum des Elektrolyserückstands konnte noch die zu 6g analoge Verbindung 6h an der charakteristischen Verschiebung der N-CH₂-O-CO-Methylengruppe ($\delta = 6.0$) identifiziert, aber nicht isoliert werden. Au-Berdem tauchen bei etwa 7.5 ppm Protonensignale auf, die nicht zugeordnet werden konnten. Es ist allerdings auszuschließen, daß diese aus einer Öffnung des Imidringes resultieren, d.h. durch heterolytische Fragmentierung entstehen, da die notwendigerweise damit verbundenen Methoxyprotonen der aromatischen Esterfunktion nicht gefunden wurden. Wir nehmen deshalb an, daß es sich um Reduktionsprodukte des Phthalimidgerüstes handelt, das nach Troll und Ollmann⁸⁾ leicht kathodisch reduzierbar ist.

Diskussion der Ergebnisse

Carbonsäuren wie 1, die gleichzeitig eine Amidstruktur aufweisen, sind hinsichtlich elektrochemischer Oxidation ambivalent. Es liegt nahe, den Reaktionsablauf in Analogie zu den früher beschriebenen O-acylierten α -Hydroxycarbonsäuren¹⁾ als Non-Kolbe-Reaktion zu formulieren, d.h. durch Oxidation der Carboxylatfunktion und Addition von Methanol an das Kation 9 zur Bildung der Produkte 2 (s. Schema 2), wobei sich dann die Frage erhebt, warum im Gegensatz zu diesen N-acetylierte α -Aminocarbonsäuren keine Fragmentierungsprodukte bilden, auch dann nicht, wenn wie bei 1b und 1c durch Erhöhung des Alkylierungsgrades in 2-Stellung die Fragmentierungsreaktion begünstigt wird^{7,9}.

Zur Klärung, ob eine in der Amidgruppe einsetzende Oxidation in Analogie zum Reaktionstyp der anodischen α -Methoxylierung¹⁰⁾ vorliegt, sollten die *N*-alkylierten Säuren **1d** und **1e** dienen. Es wurde darauf verzichtet, *N*-Benzoylsarkosin (**1d**) zu elektrolysieren, da dessen Solvolyse in Methanol über den von Schätzle und Rettenberg¹¹⁾ beschriebenen Reaktionsweg zu Benzoesäure-methylester (**3**) führen kann, der bei der Elektrolyse auch durch anodische FragSchema 2. Reaktionswege bei der Elektrolyse von N-Acyl- α -aminocarbonsäuren 1

mentierung von 1d entstehen könnte. Wegen der damit verbundenen Unsicherheit in der Aussage wurde stattdessen N-Acetylsarkosin (1e) elektrolysiert. Durch Vergleich von 1b mit 1f war sichergestellt, daß sich acetylierte und benzoylierte α-Aminocarbonsäuren bei der Elektrolyse prinzipiell gleich verhalten. Entsprechend dem Mechanismus der anodischen Alkoxylierungsreaktion über Radikalkationen wie 7 ($R^2 = CH_3$, R^3 , $R^4 = H$) hätte man in α -Stellung methoxylierte Produkte von 1e zumindest als Nebenprodukte erwarten dürfen. Wegen des Fehlens solcher Produkte selbst bei 1e, dessen Oxidierbarkeit der Amidgruppe durch N-Methylierung erleichtert wird^{10d)}, kann eine solche Reaktionsweise für N-acetylierte α-Aminocarbonsäuren aus diesen formalen Gründen ausgeschlossen werden, weil unserer Meinung nach ein Zerfall von 7 zu 8 nicht plausibel ist. Die anodische Oxidation der Säuren 1g und 1h mit Imidstruktur läßt sich ebenfalls zwanglos mit dem Mechanismus der Non-Kolbe-Reaktion erklären. Die Produkte 6g bzw. 6h entstehen dabei in Analogie zu der von uns früher schon beobachteten Reaktion¹²⁾ durch Addition von Ausgangsmaterial 1 an das Kation 9. Weil auf diese Weise sowohl durch anodische Oxidation als auch durch nachfolgende Substitutionsreaktion Säure reagiert, führt die Bestimmung des Stromumsatzes durch Titration zwangsläufig zu überhöhten Werten. Es läßt sich nicht eindeutig klären, warum Produkte des Typs 6 nur bei den Beispielen 1g und 1h entstehen. Möglicherweise ist die geringere Löslichkeit dieser Säuren und das damit verbundene partielle Auskristallisieren auf den Elektroden alleine ausschlaggebend. Daß in keinem der hier untersuchten Beispiele Kolbe-Produkte, also Dimere des Radikals 8, entstehen ist leicht verständlich, da die hier gewählten Graphitelektroden wegen der großen realen

Oberfläche bekanntermaßen die Carbenium-Ionen-Route bei der Carbonsäureelektrolyse bevorzugen¹³, zumal die hier erzeugten Radikale **8** wegen der Carbinmonium-Ionen-Resonanz der resultierenden Kationen **9** leicht oxidierbar sind. Für die Sauerstoffanaloga dazu, *O*-acylierte Ketylradikale, wurden sehr niedrige Ionisationspotentiale errechnet¹³. Führt man dagegen die Elektrolyse an Pt-Anoden durch, kann tatsächlich Kolbe-Dimeres hergestellt werden³.

Zusammenfassend läßt sich sagen, daß N-acylierte α -Aminocarbonsäuren nach dem Mechanismus der Non-Kolbe-Elektrolyse ausschließlich Substitutionsprodukte liefern. Das Fehlen der Fragmentierungsprodukte ist nicht erklärbar durch einen alternativen Reaktionsmechanismus, sondern durch die im Vergleich zu O-acylierten Carboxonium-Ionen¹⁾ größere Stabilität der hier erzeugten N-acylierten Carbimmonium-Ionen 9, die auch als Zwischenstufen des allgemeinen Reaktionstyps der Amidoalkylierung¹⁴⁾ formuliert werden. Zum Schluß sei noch erwähnt, daß es sich bei den von Fichter und Schmid²⁾ postulierten "verseifbaren Verbindungen" ganz offensichtlich um N-(Hydroxymethyl)acetamid (10) gehandelt haben muß, also dem Substitutionsprodukt der Elektrolyse von N-Acetylglycin in Wasser, aus dem dann "langsam Ammoniak austritt".

Experimenteller Teil

Allgemeine Angaben über Geräte siehe Lit.¹⁾. – CD-Spektrometer: Jafco J41C.

Die Darstellung der N-acylierten α -Aminocarbonsäuren 1 erfolgte nach literaturbekannten Verfahren. Die Substanzen zeigten die erwarteten ¹H-NMR- und IR-Spektren. Die Schmelzpunkte stimmten mit den Literatur-Werten überein. N-Benzoylglycin (1a), (R,S)-N-Benzoylalanin (1b) und N-Benzoyl-2-methylalanin (1c) wurden nach Lit.¹⁵ hergestellt. N-Benzoylsarkosin (1d) entstand nach Lit.¹⁶. N-Acetylsarkosin (1e) und (R,S)-N-Acetylalanin (1f) wurden nach dem in Lit.¹⁷⁾ beschriebenen Verfahren hergestellt. – S-(-)-N-Acetylalanin (1f) wurde von der Fa. Sigma in 99proz. Reinheit bezogen ($\lceil \alpha \rceil_D^{20} = -40.9$, Methanol, c = 4.4; vgl. Lit.¹⁸). N-Succinylglycin (1g) wurde nach Lit.¹⁹ hergestellt; zur Erzielung eines reineren Produktes wurde die erstarrte Schmelze in siedendem Ethanol gelöst und die Lösung mit Aktivkohle behandelt. Nach Entfernen des Lösemittels wurde aus Essigester umkristallisiert. N-Phthaloylglycin (1h) war nach Lit.²⁰ zugänglich.

Die Elektrolysen der N-acylierten α -Aminocarbonsäuren 1 wurden wie in Lit.^{1a)} beschrieben durchgeführt. Die in Tab. 2 angegebenen Ausbeuten stammen aus Elektrolysen, die laut Titration bis zum vollständigen Umsatz der Säuren durchgeführt wurden, danach wurde das Lösemittel i. Vak. abdestilliert. Im einzelnen wurden folgende Produkte isoliert:

N-(Methoxymethyl)benzamid (2a) durch Umkristallisieren des Elektrolyserückstandes. Schmp. 72° C (Lit.³⁾ 72.5°C).

N-(1-Methoxyethyl)benzamid (2b): Schmp. $87-89^{\circ}$ C (Lit.³⁾ 88.5°C).

N-(α -Methoxyisopropyl)benzamid (2c): Der Elektrolyserückstand wird in Ether aufgenommen, die Lösung mit wäßrigem Hydrogencarbonat gewaschen, getrocknet und mit Petrolether ausgefällt; 2c fällt durch einen schwach ausgeprägten, mentholartigen Geruch auf. Schmp. 104°C. – IR (KBr): 3440–3300 cm⁻¹ (NH); 3060–2920 (CH); 2820 (OCH₃); 1660 (Amid I); 1600 (aromat. C = C; 1580 (Amid II). - ¹H-NMR (CCl₄): $\delta = 1.65$ (s, 6H, CH₃); 3.30 (s, 3H, OCH₃); 6.1 (breit, 1H, NH); 7.33 (m, 3H, aromat. H); 7.70 (m, 2H, aromat. H). - Nach längerem Stehenlassen entsteht das in Lit.⁴⁾ beschriebene Spektrum von N-Isopropylidenbenzamid (4); der bei 2.05 ppm entstehende Peak verschwindet nicht mit D_2O_1 , ist also kein Aceton; bei Spreizung des Signals zeigt sich, daß erwartungsgemäß ein Dublett vorliegt. Eine Tautomerisierung zum korrespondierenden Enamid wird auch über Tage hinweg nicht beobachtet, es entsteht kein Peak bei $\delta = 5.55$ (vgl. Lit.⁴). Die Bildung von 4 erfolgt in $[D_6]DMSO$ erheblich schneller.

$$C_{11}H_{15}NO_2$$
 (193.25) Ber. C 68.37 H 7.82 N 7.25
Gef. C 68.22 H 7.74 N 7.18

N-(Methoxymethyl)-N-methylacetamid (2e): Isolierung durch Destillation. Sdp. 41°C/1.2 Torr (Lit.²¹⁾ 45-50°C/1 Torr). - ¹H-NMR ([D₆]DMSO): $\delta = 2.07$ (d, J = 0.3 Hz, 3H, CH₃CO); 2.86 $(d, J = 0.3 Hz, 3H, NCH_3, E-Form); 2.96 (s, 3H, NCH_3, Z-Form);$ 3.15 (s, 3H, OCH₃, Z-Form); 3.23 (s, 3H, OCH₃, E-Form); 4.67 (s, 2H, NCH₂); die Zuordnung der Signale erfolgte aufgrund ${}^{5}J_{HH}$ -Long-range Kopplung der anti-ständigen Methylgruppen in der E-Form. Die übrige Zuordnung ergab sich aus der Integration: Z-Form 36%, E-Form 64% (vgl. Lit.²²⁾). Durch Doppelresonanzexperimente (Sättigungstransfer)²³⁾ konnte gezeigt werden, daß sich Z- und E-Form bei Raumtemp. ineinander umlagern. In CDCl₃ ergab sich ein anderes Spektrum: $\delta = 2.2$ (s, 3H, CH₃CO); 3.0 (s, 3H, NCH₃); 3.3 (s, 3H, OCH₃); 3.35 (s, 3H, OCH₃); 4.7 (s, 2H, NCH₂); 4.8 (s, 2H, NCH₂).

N-(1-Methoxyethyl)acetamid (2f) kristallisiert bei der Destillation in der Vorlage aus. Schmp. 25°C (vgl. Lit.³⁾).

S-(-)-N-Acetylalanin (1f') wurde in einer Mikroapparatur nach Lit.^{1c)} elektrolysiert. Etwa alle 15 min wurde die Elektrolyse unterbrochen und der Drehwert der Lösung gemessen (graphische Darstellung s. Lit.^{1b}). CD-Spektren der nach der Elektrolyse erhaltenen Lösung von 2f zeigen keine optische Aktivität im Bereich zwischen 220 und 660 nm, in dem die Verbindung 2f laut UV-Spektrum absorbiert ($\lambda_{max} = 220$ nm, lg $\epsilon = 2.6$, Methanol) (Abb. s. Lit.^{1b}).

N-(Methoxymethyl)succinimid (2g) durch Destillation des Elektrolyserückstands; Reinheit laut GC 98.5%. Sdp. 83°C/0.1 Torr (Lit.²⁴⁾ 70°C/0.1 Torr). – IR (kapillar): 3000-2930 cm⁻¹ (CH); 2820 (OCH₃); 1770, 1705 (Imid). - ¹H-NMR (CDCl₃): $\delta = 2.77$ (s, 4H, CH₂CH₂); 3.38 (s, 3H, OCH₃); 4.87 (s, 2H, CH₂). - Als Rückstand der Destillation verbleibt N-Succinylglycin - (succinylmethyl)ester (6g) und kristallisiert beim Abkühlen aus. Die Substanz ist nach Abpressen auf einer Tonplatte analysenrein und läßt sich aus den gängigen Lösemitteln nicht umkristallisieren. Schmp. $185-190^{\circ}C. - IR$ (KBr): 3000-2940 cm⁻¹ (CH); 1750, 1710 (Imid). - ¹H-NMR ([D₆]DMSO): $\delta = 2.70, 2.73 (2 \times s, 2 \times 4H)$, CH₂CH₂, durch Spreizung erkennbar, nicht zuzuordnen); 4.15 (s, 2H, NCH₂CO); 5.35 (s, 2H, NCH₂O).

> C11H12N2O6 (268.2) Ber. C 49.26 H 4.51 N 10.44 Gef. C 49.31 H 4.69 N 10.23

N-(Methoxymethyl)phthalimid (2h) durch mehrmaliges Umkristallisieren des mit Hydrogencarbonat säurefrei gewaschenen Elektrolyserückstands. Schmp. 114-119°C (Lit.²⁵⁾ 121-123°C). Der Mischungsschmelzpunkt mit auf anderem Wege hergestellter Substanz^{1b)} betrug 120°C.

CAS-Registry-Nummern

la: 495-69-2 / 1b: 115245-45-9 / 1c: 57224-51-8 / 1d: 2568-34-5 / le: 5888-91-5 / 1f: 1115-69-1 / 1f': 97-69-8 / 1g: 5694-33-7 / 1h: 4702-13-0 / 2a: 13156-28-0 / 2b: 115245-46-0 / 2c: 115245-47-1 / 2e: 38592-02-8 / 2f: 55204-51-8 / 2g: 98196-90-8 / 2h: 1954-06-9 / 4: 78007-58-6 / 6g: 115245-48-2

- ^{1) 1a)} H. G. Thomas, St. Kessel, Chem. Ber. 118 (1985) 2777. -^{1b)} Teil der *Dissertation* von St. Kessel, Techn. Hochschule Aa-chen, 1985. – ^{1c)} H. G. Thomas, St. Kessel, E. Müller, *Chem. Ber.* 119 (1986) 2173; *Erratum* Lit. ^{1c)}. 4'b in Schema 1 ist Benzoesäure-methylester ohne [¹⁸O].
- ²⁾ F. Fichter, M. Schmid, Helv. Chim. Acta 3 (1920) 704
- naud, Helv. Chim. Acta 68 (1985) 2342; T. Shono, Y. Matsumura, K. Tsubata, K. Uchida, J. Org. Chem. 51 (1986) 2590; Ph. Renaud, D. Seebach, Angew. Chem. 98 (1986) 836; Angew. Chem. Int. Ed. Engl. 25 (1986); Ph. Renaud, D. Seebach, Helv. Chim. Acta 69 (1986) 1704; Ph. Renaud, D. Seebach, Synthesis 1986, 424.
- S. Jendrejezewski, W. Steglich, Chem. Ber. 114 (1981) 1337.
- ⁵⁾ Es liegt ein dynamisches Gleichgewicht vor. Zuordnung und Diskussion s. Lit. 1b)
- 6) M. Mitzlaff, Ger. Offen, 2,337,616 (1973) [Chem. Abstr. 82 (1975) P 177239d].
- ⁷⁾ H. G. Thomas, J. Gabriel, J. Fleischhauer, G. Raabe, Chem. Ber. 116 (1983) 375.
- ⁸⁾ T. Troll, G. W. Ollmann, Tetrahedron Lett. 22 (1981) 3497.
- ⁹⁾ C. A. Grob, Angew. Chem. 81 (1969) 543; s. dort Tab. 3 und dazu
- zitierte Literatur.
 ¹⁰⁾ ^{10a)} T. Shono, *Tetrahedron* 40 (1984) 811. ^{10b)} M. Mitzlaff, J. Cramer, R. Pistorius, *Chem.-Ing.-Tech.* 54 (1982) 601. ^{10c)} Ausführliche Diskussion s. Lit.^{1b)}. ^{10d)} T. Shono, H. Hamaguchi, Y. Matsumura, J. Am. Chem. Soc. 97 (1975) 4264; vgl. die dort verwendeten Verbindungen 21 und 23.
- ¹¹⁾ E. Schätzle, M. Rettenberg, Experientia 21 (1965) 373.
- ¹²⁾ H. G. Thomas, E. Katzer, *Tetrahedron Lett.* **1974**, 887. ¹³⁾ Diskussion s. Lit.^{1b)}.
- ¹⁴⁾ H. E. Zaugg, Synthesis 1984, 85-110, 181-212.
 ¹⁵⁾ R. E. Steiger, J. Chem. Soc. 1944, 396.
- ¹⁶⁾ W. Cocker, A. Lapsworth, J. Chem. Soc. 1931, 1894.
- ¹⁷⁾ M. Bergmann, F. Stern, *Ber. Dtsch. Chem. Ges.* 63 (1930) 437.
 ¹⁸⁾ S. M. Birnbaum, L. Levintow, R. B. Kingsley, J. P. Greenstein, J. Biol. Chem. 194 (1952) 455.
- ¹⁹⁾ J. Scheiber, H. Reckleben, Ber. Dtsch. Chem. Ges. 46 (1913) 1100.
- ²⁰⁾ A. K. Bose, F. Greer, C. C. Price, J. Org. Chem. 23 (1958) 1335.
- ²¹⁾ Beilsteins Handbuch der organischen Chemie, Bd. 4, E III, S. 125, Springer Verlag, Berlin-Heidelberg-New York 1962.
- ²²⁾ C. A. Evans, D. L. Rabenstein, J. Am. Chem. Soc. 96 (1974) 7312.
- ²³⁾ H. Günther, NMR-Spektroskopie, S. 304, Thieme, Stuttgart 1973.
- ²⁴⁾ L. W. Kissinger, H. E. Ungnade, J. Org. Chem. 23 (1958) 815.
 ²⁵⁾ s. Lit.²¹⁾, E III/IV, Bd 21, S. 5108 (1979).

[20/88]